Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Environ Sci Technol ; 57(21): 7913-7923, 2023 05 30.
Article in English | MEDLINE | ID: covidwho-2315445

ABSTRACT

Antiviral transformation products (TPs) generated during wastewater treatment are an environmental concern, as their discharge, in considerable amounts, into natural waters during a pandemic can pose possible risks to the aquatic environment. Identification of the hazardous TPs generated from antivirals during wastewater treatment is important. Herein, chloroquine phosphate (CQP), which was widely used during the coronavirus disease-19 (COVID-19) pandemic, was selected for research. We investigated the TPs generated from CQP during water chlorination. Zebrafish (Danio rerio) embryos were used to assess the developmental toxicity of CQP after water chlorination, and hazardous TPs were estimated using effect-directed analysis (EDA). Principal component analysis revealed that the developmental toxicity induced by chlorinated samples could be relevant to the formation of some halogenated TPs. Fractionation of the hazardous chlorinated sample, along with the bioassay and chemical analysis, identified halogenated TP387 as the main hazardous TP contributing to the developmental toxicity induced by chlorinated samples. TP387 could also be formed in real wastewater during chlorination in environmentally relevant conditions. This study provides a scientific basis for the further assessment of environmental risks of CQP after water chlorination and describes a method for identifying unknown hazardous TPs generated from pharmaceuticals during wastewater treatment.


Subject(s)
COVID-19 , Water Pollutants, Chemical , Animals , Disinfection/methods , Chlorine/analysis , Zebrafish , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , COVID-19 Drug Treatment , Water
2.
Environ Res ; 226: 115679, 2023 06 01.
Article in English | MEDLINE | ID: covidwho-2256897

ABSTRACT

Although ambient temperature has been linked to asthma exacerbation, impacts associated with extreme temperature events remain unclear. This study aims to identify the events characteristics that elevate risk of asthma hospital visits, and to assess whether healthy behavior changes due to the COVID-19 prevention and control policy may modify the relationships. Data of asthma hospital visits from all medical facilities in Shenzhen, China during 2016-2020 were assessed in relation to extreme temperature events using a distributed lag model. Stratified analysis was conducted by gender, age and hospital department to identify susceptible populations. Through events defined by various duration days and temperature thresholds, we explored the modification by events intensity, length, occurrence time and healthy behaviors. The cumulative relative risk of asthma during heat waves compared to other days was 1.06 (95%CI: 1.00-1.13) and for cold spells was 1.17 (95%CI: 1.05-1.30), and that of males and school-aged children were generally higher than other sub-groups. There were significant effects of heat waves and cold spells on asthma hospital visits when the mean temperature was above 90th percentile (30 °C) and below 10th percentile (14 °C) respectively, and the relative risks were higher when events lasted longer, became stronger, occurred in daytime and in early summer or winter. During the healthy behaviors maintaining period, the risk of heat waves increased whilst the risk of cold spells reduced. Extreme temperatures may pose considerable impact on asthma and the health effect can be modified by the event characteristics and anti-epidemic healthy behaviors. Strategies of asthma control should consider the heightened threats of the intense and frequent extreme temperature events in the context of climate change.


Subject(s)
Asthma , COVID-19 , Male , Child , Humans , Hot Temperature , Temperature , COVID-19/epidemiology , Cold Temperature , Asthma/epidemiology , Asthma/etiology , China/epidemiology , Health Behavior
3.
Lancet ; 400(10364): 1677-1678, 2022 11 12.
Article in English | MEDLINE | ID: covidwho-2184640
4.
Journal of Shandong University ; 58(10):7-12, 2020.
Article in Chinese | GIM | ID: covidwho-1975288

ABSTRACT

The frequent occurrences of emerging infectious diseases in recent years have caused huge burdens on the global economy and society. Climate-driven changes in the natural environment disrupt the ecosystem balance, destroy the habitat of wild animals, affect the survival, transmission and distribution of pathogens and their vectors and intermediate hosts, which contribute to increased risks of infectious diseases. Due to the complex links among climate change, human activity, nature environment, wildlife and pathogens, the challenge of emerging infectious diseases should be addressed with multidisciplinary and multi-sectoral collaboration in the future.

5.
Environ Res ; 212(Pt A): 113156, 2022 09.
Article in English | MEDLINE | ID: covidwho-1907002

ABSTRACT

Studies have shown that ambient extreme temperatures (heat and cold) were associated with an increased risk of childhood pneumonia, but the evidence is very limited in low-middle-income countries. It also remains unknown whether pneumococcal conjugate vaccine (PCV) could prevent temperature-related childhood pneumonia. This study collected data on ambient temperature and hospitalizations for childhood pneumonia in Matlab, Bangladesh from 2012 to 2016. Interrupted time series (ITS) analysis was employed to assess the impact of PCV (10-valent) intervention on childhood pneumonia hospitalizations. A time-stratified case-crossover analysis with a conditional logistic regression was performed to examine the association of childhood pneumonia hospitalizations with extreme temperatures and heatwaves before and after PCV10 intervention. Subgroup analyses were conducted to explore the modification effects of seasons, age, gender, and socioeconomic levels on temperature-related childhood pneumonia hospitalizations. We found that after PCV10 intervention, there was a sharp decrease in hospitalizations for childhood pneumonia (relative risk (RR): 0.59, 95% confidence interval (CI): 0.43-0.83). During the study period, heat effects on childhood pneumonia appeared immediately on the current day (odds ratio (OR): 1.28; 95% CI: 1.02-1.60, lag 0), while cold effects appeared 4 weeks later (OR: 1.53, 95% CI: 1.06-2.22, lag 28). Importantly, cold effects decreased significantly after PCV10 (p-value<0.05), but heat and heatwave effects increased after PCV10 (p-value<0.05). Particularly, children from families with a middle or low socioeconomic level, boys, and infants were more susceptible to heat-related pneumonia. This study suggests that PCV10 intervention in Bangladesh may help decrease cold-related not heat-related childhood pneumonia.


Subject(s)
Pneumonia , Vaccination , Bangladesh/epidemiology , Child , Hospitalization , Humans , Infant , Interrupted Time Series Analysis , Male , Temperature
6.
Sci Rep ; 11(1): 14663, 2021 07 19.
Article in English | MEDLINE | ID: covidwho-1317813

ABSTRACT

Multiple small- to middle-scale cities, mostly located in northern China, became epidemic hotspots during the second wave of the spread of COVID-19 in early 2021. Despite qualitative discussions of potential social-economic causes, it remains unclear how this unordinary pattern could be substantiated with quantitative explanations. Through the development of an urban epidemic hazard index (EpiRank) for Chinese prefectural districts, we came up with a mathematical explanation for this phenomenon. The index is constructed via epidemic simulations on a multi-layer transportation network interconnecting local SEIR transmission dynamics, which characterizes intra- and inter-city population flow with a granular mathematical description. Essentially, we argue that these highlighted small towns possess greater epidemic hazards due to the combined effect of large local population and small inter-city transportation. The ratio of total population to population outflow could serve as an alternative city-specific indicator of such hazards, but its effectiveness is not as good as EpiRank, where contributions from other cities in determining a specific city's epidemic hazard are captured via the network approach. Population alone and city GDP are not valid signals for this indication. The proposed index is applicable to different epidemic settings and can be useful for the risk assessment and response planning of urban epidemic hazards in China. The model framework is modularized and the analysis can be extended to other nations.


Subject(s)
COVID-19/epidemiology , Epidemics , COVID-19/transmission , China/epidemiology , Cities , Humans , Models, Theoretical , Transportation , Urban Population
SELECTION OF CITATIONS
SEARCH DETAIL